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We describe an investigation, largely experimental, to determine stable approximations 
for the boundary conditions of hyperbolic systems. We are concerned with the fully discrete 
leapfrog scheme, and also with the method of lines which uses a finite difference approxima- 
tion in space and an ODE solver in time. We are especially interested in schemes which 
have fourth order accuracy. Our discussion concerns problems in only one space dimen- 
sion. We describe a modification of the scheme developed by Oliger [7] to stabilize the 
leapfrog scheme when a fourth order spatial difference approximation is used. We analyze 
boundary approximations for the method of lines by a numerical study of the eigenvalues 
and norm of the matrix for the semi-discrete system. These are checked by integrations of 
the system using an ODE solver. We also study the use of boundary conditions which are 
differentiated in time. This is done in order to obtain a system to which an ODE solver 
can be conveniently applied. 

1. A DUFORT FRANKL STABILIZER 

We are first concerned with the simple hyperbolic equation 

Ut + u, = 0 

with the initial-boundary data 

(1) 

44 0) = J(x) O<X<l 

64 0 g(f) O<t 

The method of Gustafsson et. al. [19] can be used to show that the following version 
of the leapfrog scheme is unstable due to the boundary approximation (we use the 
notation ujn = u(xj , t,)). 

,;+I = u,“-l - X(U,“,, - Up?,) O<j<J 

%” = g(L+3 
,;+I = u,“-’ - 2h(U.J” - u;-,) 

xi = jAx =,j/J h = At/Ax 

(2) 
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340 JOHN GARY 

They show that replacement of the downstream boundary by the following approxima- 
tion yields a stable scheme. 

n+1 
u.l = UJ" - h(UJ" - u,-1) (3) 

Oliger [7] has shown how to obtain a stable “leapfrog” scheme with accuracy O(dt2 + 
LX+) for this problem. A generalization of (2) using fourth order spatial differences in 
the interior and third order one-sided differences near the boundary is unstable. Use 
of a first order one-sided difference in time similar to (3) would reduce the accuracy. 
Oliger uses a time average at points near the boundary in order to stabilize the scheme, 
namely the following. 

ujn+l = - suj”_, + 8 uj”,, - Ui”,z) 2<jdJ-2 

UC+1 zzz q-1 - ; @Jo” - ; (U,“” + u;-‘) + 6U2” - U,” 

1 

(4) 

uJn+l zzz u,“-l - ; (--2ci;_, + 9cJ;-, - 18UJ-, + ; (U,“” + u;‘)) 

Application of this time averaging to the second order scheme (2) also yields a stable 
scheme whose boundary approximation can be written in the form 

uJn+l = u,“-’ - 2x(&(u,“+1 + Ly’) - u,-,) 

(5) 
= u,“-’ - 2X( UJ” - z&) - A( uJn+l - 2UJ” + u,“-‘) 

This approximation was used by Elvius and SundstrGm [4]. This can be regarded as 
the addition of a stabilizing term to the boundary approximation of equation (2). This 
is similar to the DuFort Frank1 scheme for the heat equation, 

which can be written as 

u;+1 = uij”-‘+ +$J;,, - 2Uj” + Ui”_,) - ++J;+1 _ 2Uj” + q-1) 

Gottlieb and Gustafsson [17] have studied the application of this stabilizing term to 
the heat equation. 

All this suggests that we can regard the time-averaging of Sundstriim and Oliger as 
a DuFort Frank1 type of stabilizing term. Therefore we consider the following leapfrog 
schemes for equation (1). The first has second order accuracy in the mesh interior 

u;+1 = g&+1) 
q?+1 = U,“-’ - 2At Sj’“‘(U”) - yrhp(U;+l - 2Uj” + U,“-‘) 
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The parameter TV can be varied in order to determine the minimum stabilization term 
(see tables I and II). 

The above symbols are defined by 

S!“‘(V) = (U” - u9 )/(2Ax) 3 3+1 31 1 <.j<J 

Ss”‘(U”) = (UJ” - UyJAx 

yj = 0 for l,<j<J 

y.l= 1 

x = At/Ax 

The second scheme uses a fourth order spatial approximation. 

ujn+l = q-1 - 24 t S,‘“‘(U”) - yjxp(u;+l - 2U,n + u,“-1) 

(6) 

(7) 

where 

Sj’“‘(U”) = (u;, - Sui”_, + Suj”,, - uj=,)/(lZAx) 2,<j<J-2 

The parameter yi is set to correspond to the averaging scheme given in (4). Thus 

y,=Ofor2<j<J-2 

Yl = YJ-1 = !i 

yJ = 11/16 

The operators 8:‘) have third order accuracy near the boundary. No operator is needed 
at j = 0 for equation (1). The parameter p can be varied. This parameter will deter- 
mine the stability and, to some extent, the accuracy of the scheme. The main advantage 
of the DuFort Frank1 term over the averaging is in its application to a nonlinear 
equation. For example, consider an equation written in conservation form 

Application of the averaging scheme to this equation requires the solution of a 
nonlinear equation. We have not tested the DuFort Frankl stabilization on a nonlinear 
system of equations. However, it did seem to work on a simple nonlinear hyperbolic 
equation with a single unknown. We regard the parameter p as a scaling factor. In the 
case of a nonlinear system, this parameter should probably include the norm of the 
Jacobian matrix of the system as a factor. 

We test the difference schemes (6) and (7) by application to problem (1), except we 
use the interval 0 < x < 0.5. The solution is taken to be 

u(x, t) = sin 277(x - t) 
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Therefore, the initial boundary data is 

u(x, 0) = sin 27rx 

u(0, t) = -sin 2d 

The mesh is given by 

xj = jLlx = j/(2J) O<j,<J 

To test the stability of the second order scheme (6) we use J = 10, and run out to a 
time t = 160. We abort the run and call the scheme unstable if 

A similar test used for the fourth order scheme (7) except the test was terminated at 
t = 80. The results are shown in table I. 

The accuracy of the solution, at least in our examples, did not seem to depend much 
on p. With J = 10 and X = .2 the error from the fourth order scheme is shown in 
table II. 

TABLE I 

Stability of Schemes (6) and (7) 

Stability of the second order scheme (6) 

x = 0.9 p = 0.6 p = 0.7 p = 1.8 p = 2.0 
unstable stable stable unstable 

A = 0.5 p = 0.5 p = 0.6 p = 7.0 p = 8.0 
unstable stable stable unstable 

Stability of the fourth order scheme (7) 

A = 0.4 p = 0.5 p = 0.6 p = 4.0 p = 5.0 
unstable stable stable unstable 

A = 0.2 p = 0.4 p = 0.5 p = 20. p = 25. 
unstable stable stable unstable 

a Scheme (6) ran to I = 160, scheme (7) to t = 80. J = 10 with solution u = sin 2?r(x - t), 
0 < x < 0.5. 

TABLE II 

The Error for Scheme (7) with J = 10, X = 0.2 for the Solution u = sin 2x(x - t) at t = 1.0 

P 0.7 1.0 1.5 

Error 5.3(-3) 5.8(-3) 6.8(-3) 
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We will also use the following simple hyperbolic system as a test case. 

au2 au1 -- 
at ax 

O<x<a 

au, 224 -=- 
at ax 

O<t 

The characteristic variables and equations are 

Wl = 241 - 242 3 = 2% -_ 
at ax 

w2 = 4 + u2 
aw, aw2 -- 
at ax 

(8) 

(9) 

In all of the experiments with the system (8) we choose the initial-boundary data so 
that the solution is 

w,(x, t) = sin 27r(x - t) 

w,(x, t) = sin 24x + t) 

The corresponding solution in terms of u is given by 

Ul = &(Wl + WJ 

24 = &(w2 - WI) 

2. BOUNDARY CONDITIONS FOR THE METHOD OF LINES 

The method of lines is based on the system of ordinary differential equations (DE) 
obtained when the spatial derivatives are replaced by finite differences. This system 
of ODE is then solved by an ODE solver. The method has been applied to partial 
differential equations by many people including Sincovec and Madsen [ 1 I], Carver [2], 
Loeb [6], Bowen [l], Hastings [12] and others. There are several excellent ODE 
solvers available for use with this method. The method of lines is certain to be stable 
when it is applied to symmetric hyperbolic systems with constant coefficients and 
periodic boundary conditions of the form 

2E+A3j!+O u = dx, t> 

A reasonable finite difference scheme will result in a system of ODE whose matrix M 
is skew symmetric 

_v’ = M_U + G(t) (13) 

Note that G(t) = 0 in the case of periodic boundary conditions. The eigenvalues of 
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the matrix M are pure imaginary and the eigenvectors are orthogonal. Note that the 
matrix A is assumed to be symmetric. Therefore the norm of the exponential matrix is 
bounded uniformly independent of the mesh spacing used in the spatial discretization. 
The solution of the system of ODE (13) can be written in the form 

U(t) = @U(O) + Jot e”(“-W(7) d7 

Therefore the difference scheme will be stable. This is true even if the Euler method is 
used in the ODE solver. The Euler method with a fixed ratio h = At/& is uncondi- 
tionally unstable. However the ODE solver will adjust the step size to produce the 
desired error in the solution of the system of ODE. Of course, this would be expensive. 
The ODE solver should probably be based on a time discretization which is stable 
when applied to a hyperbolic system. Numerical experiments [14] indicate that the 
method of lines may not be as efficient as the Kriess-Oliger version of the leapfrog 
which uses fourth order differences in space and a second difference in time. However 
the difference is not great and the method of lines is easier to use since it is not neces- 
sary to choose a value of d t in order to obtain optimal performance. Our purpose in 
this section is to study the stability of the method of lines for non-periodic boundary 
conditions. 

We take an experimental approach to this problem, which is to code the difference 
schemes and test them. We also study the properties of the matrix M in the equation 
for the method of lines (13). We compute the eigenvalues of M, although these do not 
determine stability unless we also know something about the eigenvectors of M. We 
also compute the norm of the exponential matrix exp(M), although what we really 
need is a uniform bound on the norm of exp(Mt). We look at four schemes for the 
simple hyperbolic equation (1). 

A. An inconsistent scheme. We first look at a scheme which we know is unstable. 
This scheme uses one-sided differences at both boundaries instead of setting the 
solution at the inflow boundary. This scheme is defined by 

vi’(t) = -8i’2’(U(t)) O<j,<J (14) 

where the operator is as given in (6), with 

$2) = 0 (U (t) - u (t))ldx 1 0 

B. A consistent second order scheme. This scheme is also applied to equation (1). 
It is defined by 

Uo(t) = - sin 27rt 

uj’(t) = - a;“‘( U(t)) 
(15) 

1 <j<J 

This scheme is only first order at the boundary, but the overall accuracy is second 
order. 
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C. A fourth order scheme with third order boundary approximation. This scheme 
applies to (1) and is defined by 

Uo(t) = - sin 2nt 

Uj’(l) = -sj’“‘(u(t)) l<j<J 
(16) 

The operator a?’ is defined in (7). It is fourth order in the interior and third order at 
j= l,J-- 1,andJ. 

D. A fourth order scheme with a fourth order boundary approximation. This scheme 
is the same as the preceeding except that a fourth order five point operator is used at 
the pointsj = 1, J - 1, and J. The operator is defined as follows at these points. 

6?‘(U) = (--6U,, - 2OU, + 36U, - 12U, + 2U,)/(24fix) 

S$t!l(U) = (--2U.,-, + 12UJ-, - 36lJ-, + 20UJe1 + 6U,)/(24Ax) (17) 

Ss”‘( U) = (6U,-, - 32 U,-, + 72UJ-2 - 96 UJ-, + 5OU.,)/(24Ax) 

E. A fourth order scheme with non-characteristic boundary approximation. In this 
case we use the method of lines to solve the system (8). The scheme is the following 
where the operator At41 is fourth order in the interior and third order near the 
boundary. It is the same operator as used in scheme C. 

U,‘(O, t) = 0. 

U,‘(J, t) = 7r(cos 2r(a + t) - cos 27r(a - t)) 
(18) 

U,‘(j, t) = 8j”‘(U,(t)) 1 <j<J-1 

Ui(j, t) = sj”‘(u,(t)) 0GjG.l 

Note that the boundary conditions are differentiated, that is we specify U,‘(O, t) and 
not U,(O t). We will say more about this in the next section. 

We analyze these schemes in two ways. The norm of the exponential matrix exp(M) 
is computed where A4 is the matrix of the system defined in (21). The summation 

2 M”/k! 
k=O 

is terminated when 11 Mk 11,/k! < 10-3. We use the maximum norm defined by 

my C I mij I 
i 

This is fairly expensive especially for the system (18) therefore we did not run too 
many experiments. This norm provides some insight into stability, but we really need 
a bound for 11 exp(Mt)ll which is uniform in t and also uniform with respect to the 
order of M, that is, with respect to the mesh spacing. 
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The second part of the analysis involves solving the system with an ODE solver. In 
some cases (table IV) a Runge-Kutta-Fehlberg method taken from a report by Hull 
and Emight [5] is used. In other cases a ODE program based on the Adams multistep 
method obtained from Shampine and Gordon [9] is used. 

The results giving the properties of the matrix M are in table III. We know 
scheme (A) can not be stable. However, the eigenvalues of M appear from these and 
other computations to be pure imaginary. If this is actually the case, then there must 
be an eigenvector deficiency, or the norm of the matrix of eigenvectors must be 
unbounded when the mesh spacing goes to zero. This is the only unstable scheme 
which does not have an eigenvalue with positive real part which we find rather interest- 
ing. The matrix M for scheme (A) appears to have a double or triple root at zero 
depending on odd or even J. We have shown the maximum real part of the eigenvalues 
as zero, but they can be around lO-4 because of rounding error in the triple root. For 
scheme (A) the instability is quite apparent in the norm of the exponential matrix. In 
the other cases this norm does not distinguish between stable and unstable schemes. 
We would expect this norm to be a poor indicator of stability or instability, unless it 
is extremely large. 

TABLE III 

Behavior of the Matrix M from (13)” 

Inconsistent 2nd 5 0.0 50. 
order scheme (A) 10 0.0 199. 
a = 1.0 20 0.0 798. 

Consistent 2nd 5 -0.26 1.7 
order scheme (B) 10 -0.08 2.5 
a = 1.0 20 -0.02 3.5 

4th order with 5 -0.34 3.9 
3rd order boundary (C) 10 -0.05 6.1 
a = 1.0 20 -9.8E-3 8.7 

4th order with 5 -0.07 6.7 
4th order boundary (D) 10 0.22 11.1 
a = 1.0 20 0.24 16.6 

System (18) with non- 5 1.42 22.2 
characteristic boundary 10 0.82 24.0 
approx. (B) a = 0.5 20 0.57 - 

o Here h, denotes the maximum over the real parts of the eigenvalues of M. The interval 
is 0 Q x < a. 

We are indebted to one of the reviewers for this paper for the following enumeration 
of the eigenvalues of the difference scheme of (A). For odd J, the eigenvalues are 
A1 = A2 = 0, A, = -A4 = 2i sin (77/24,... to h, = --h,+, = 2i sin ((J - 2) 7~/2J). For 
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even J, they are A, = h, = A, = 0, A, = -A, = 2i sin (7r/2J),..., A, = -A,+, = 2i 
sin ((J - 2) n-/2J). 

The eigenvalues indicate that schemes (B) and (C) are stable whereas (D) and (E) 
are unstable. This is confirmed by integration of the equations using an ODE solver 
(see table IV). The instability in (D) apparently requires a small error tolerance in 
order to solve the equations accurately for large t. This same phenomenon occurs with 
the unstable scheme (18) for the system (8). This is illustrated in table V. Note the 
extremely small values of the error tolerance f required to obtain an accurate solution 
at t = 20. We are surprised that it is possible to obtain such an accurate solution 
when the scheme has the strong instability indicated by an eigenvalue whose real part 
has the value 1.4. The integrations in table V do not show this strong instability 
especially if the system is integrated very accurately by using a small error tolerance E. 

TABLE IV 

Error for Various Schemes Applied to (1)a 

J t = 1.0 t = 10.0 t = 20.0 t = 80.0 

Inconsistent scheme (A) 10 9.44 665.0 - - 

Second order scheme (B) 10 5.6(-2) 5.7(-2) 5.7(-2) 5.7( -2) 

Fourth order scheme (C) 5 1.2(-2) 1.6(-2) 1.6(-2) 1.6(-2) 

10 4.3(-3) 4.6(-3) 5.0(-3) 4.9(-3) 
20 2.5(-4) - - - 

Fourth order including boundary (D) 5 3.2(-2) 2.5(-2) 2.5(-2) 2.5(-2) 
10 6.9(-4) 7.6(-3) 4.2(-l) - 
20 4.4(-5) - - - 

Fourth order with differentiated 5 1.2(-2) 1.5(-2) 1.6(-2) 1.6(-2) 
boundary Eq. (22) 10 4.3(-3) 4.3(-3) 4.3(-3) 4.3(-3) 

20 2.4( -4) - - 

o Here a = 0.5 (0 < x < a) and c is chosen as required for the desired accuracy. 

TABLE V 

Error for the System (18) with Noncharacteristic Boundary Approximation (E)’ 

Error (t) 
E 1.0 10.0 20.0 

1 .O( -4) 1.2(-2) 1.1(-l) 2.0 
J=5 l.O(-6) 1.2(-2) 1.2(-l) 8.1(-l) 

l.O(-8) 1.2(-2) 1.2(-l) 2.9(-l) 

J= 10 l.O(-4) 8.3(-4) - - 

a Solved by Adams ODE solver where c is the absolute error tolerance. Here a = 0.5. 
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However, the growth rate due to a perturbation in the initial data of the form . l( - 1 )i 
produces an eventual growth rate in the error between 0.4 and 1.8 which is in rea- 
sonable agreement with the maximum real part of the eigenvalue of 1.4 (when J = 5). 
The results for a stable scheme for the system (8) are given in the next section. 

Perhaps it is unreasonable to draw any general conclusions from such limited 
experiments, but we will attempt to do so. It appears that boundary conditions for the 
method of lines may be slightly less troublesome than with a scheme which uses a 
fixed time step. The leapfrog scheme with fourth order spatial differences requires a 
time-average for stability which the method of lines does not require. Gottlieb [13] has 
had difficulty in obtaining a stable boundary approximation for a dissipative fourth 
order version of the Lax Wendroff scheme. The method of lines did not work with 
scheme (D). Also, the method of lines failed with the boundary approximation (18). So 
we conclude that the method of lines is slightly easier to stabilize than the leapfrog 
scheme, but the boundary approximation is still troublesome. 

3. A DIFFERENTIATED BOUNDARY CONDITION FOR THE METHOD OF LINES 

We want to apply existing ODE solvers, such as the RKF(Runge-Kutta-Fehlberg) 
of Watts and Shampine [15] or the ODE(Adams method) of Shampine and 
Gordon [9] to the systems obtained by spatial discretization of hyperbolic systems. If 
the system is derived in a direct way it may not be easy to apply an ODE solver. For 
example, consider the equation 

au -= at - cos(t) g 

on the interval 0 < x < 1. If cos (t) > 0, then the semidiscrete approximation might 
be 

w> = &l(t) 

uj’(t) = - cos(t) sj”‘(u(t)) 1 <‘j<J 

On the other hand if cos (t) < 0, then we have 

uj’(t) = - cos(t) 8:“‘(U(t)) O<j,(J-I 
u,(t) = gJ(t>. 

cm 

The boundary condition must be applied first on one side of the interval, and then on 
the other. The system of differential equations changes with time. This means that 
existing ODE solvers can not be used unless their coding is modified. This modification 
does not appear difficult in the case of an RKF code, but it does appear to be difficult 
for the multistep Adams codes. Therefore we differentiate the boundary conditions 
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in order to obtain a uniform system of differential equations. The left boundary 
approximation for (19) thus becomes 

There is a possible discontinuity in the right side of the differential equation, however 
there is always a differential equation for each variable. Madsen [16] uses such a 
differentiated boundary condition in a package for the solution of one dimensional 
PDE which is based on the method of lines. It has given good results. 

F. A scheme with differentiated boundary. We first apply differentiated boundary 
conditions to a fourth order scheme for equation (1). The scheme is then 

Q)‘(t) = -2?7 cos 27Tt 

uj’(t) = -tp(U(t)) 1 ,<j<J 
(22) 

The operator 6:‘) is defined in (7). The results are given in table IV. There is clearly 
little difference between the scheme (C) with nondifferentiated boundary and this 
scheme (F). 

Next we consider the use of differentiated boundary conditions for the system (8). 
We write the equations in terms of the original variables u1 and u2 . The coding will 
be simplified if we avoid explicit use of the characteristic variables w1 and w2 at the 
boundary. However we must arrange the approximation to specify the inflow charac- 
teristic and compute the outflow characteristic from one-sided differences; that is, the 
boundary conditions must be given in terms of w1 and w2 in order that the scheme be 
stable. We first write the equations for the inflow characteristic at x = 0. 

u1 - u2 = -sin 2rrt 

and then differentiate to obtain 

U,‘(O) - U,‘(O) = -27r cos 27rt 

The equation for the outflow characteristic is 

U,‘(O) + U,‘(O) = gqu, + U,) (23) 

The spatial derivatives in the equation have been approximated by one-sided dif- 
ferences of third order accuracy. Third order approximations are also used at the 
points adjacent to the boundary. The difference scheme in the interior is given below 
where the operator Sj4) is defined by (7). 

q’(t) = SI”‘(tY,(t)) 

c&‘(t) = sj”‘(u,(t)) 
(24) 



350 JOHN GARY 

At the boundary the two characteristic equations can be combined to obtain equations 
in the original variables u1 and u2 . 

U,’ = (tp(Ul + U‘J - 2rr cos 2742 

U,’ = (t$‘(Ul + UJ + 2%- cos 2d)/2 
(25) 

The result of solving these equations with the Adam’s ODE solver is given in table VI. 
The method seems to work satisfactorily. 

TABLE VI 

Error for the Adam’s Method ODE Solver Applied to the System (24) and (25) 

J t = 1.0 t = 10.0 t = 20.0 t = 80.0 

5 8.9(-3) 9.4(-3) 9.4(-3) 9.4(-3) 

IO 2.9(-3) 3.0(-3) 3.2(-3) 4.8( -3) 

20 1.8(-4) - - - 

0 Here 0 < x < 0.5, E set as required by desired accuracy. 

It would certainly be desirable to express the boundary conditions directly in terms 
of the original variables U, and U, rather than in terms of the characteristic variables 
W, and W, . However, this can result in an unstable difference scheme as Chu and 
Sereny [3] and Sundstrom [lo] have shown. The use of non-characteristic variables in 
the boundary approximation does not always produce an unstable scheme [18,4]. 
However, in the case of the simple system (81, the difference scheme is unstable if 
the boundary conditions are given in terms of the original variables u1 and uz rather 
than in terms of the characteristic variables W, and W, as outlined above. In the case 
of the scond order leapfrog scheme this can be proven using the methods of 
Gustafsson, et, al. [19]. Our numerical experiments described above indicate that the 
same restriction applies to the method of lines. Gunzburger has found the same type 
of boundary instability is caused by the use of noncharacteristic variables in a finite 
element approximation of the hyperbolic system (8) [20]. 

Of course, experiments such as this based largely on linear equations do not prove 
anything. This is especially true if the methods are applied to nonlinear equations. 
We have tested the differentiated boundary condition for second and fourth order 
schemes on a few simple nonlinear equations including the shallow water equations 
without problems, however we have not yet run enough experiments to be able to 
report the results. 
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